

PJT

Highlights & Features

- Universal AC input voltage
- Standard industrial foot print of 2" x 4"
- Low leakage current < 0.1mA
- High MTBF > 700,000 hrs as per Telcordia SR-332
- Multiple connector source options

Safety Standards

CB Certified for worldwide use

Model Number: Unit Weight: Dimensions (L x W x D): 101.6 x 50.8 x 31.8 mm [2" x 4"]

PJT- V100WBB 0.15 kg (0.33 lb)

General Description

The PJT open frame power supply series offers choices of 12V, 15V, 18V and 24V nominal output voltages. The single output products are designed with small standard industrial foot prints at 2" x 4". The highly efficient convection cooling designs enable optimum thermal management for high power efficiency. The PJT series of products can operate from -10°C to +70°C across the entire input voltage range of 90 to 264Vac and are certified for safety standard according to IEC/EN/UL 62368-1 and for EMI standard according to EN 55032, Class B.

Model Information

PJT Open Frame Power Supply

Model Number	Input Voltage Range	Rated Output Voltage	Rated Output Current
PJT-12V100WBB	90-264Vac	12Vdc	6.67A (Convection) 8.33A (Forced Cooling)
PJT-15V100WBB		15Vdc	5.33A (Convection) 6.67A (Forced Cooling)
PJT-18V100WBB		18Vdc	4.44A (Convection) 5.55A (Forced Cooling)
PJT-24V100WBB		24Vdc	3.33A (Convection) 4.17A (Forced Cooling)

Model Numbering

PJ	T –	<u>xx</u> v	100W	В	В	
Open Frame	Product Type T – ITE Application Series	Output Voltage 12V 15V 18V 24V	Output Power	Package Type B – Open Frame	Family Code B	Harness Connector A – JST connector B – Molex connector* C – JWT connector*

*Options

1

All parameters are specified at 25°C ambient and AC unless otherwise indicated. (October 2020, Rev. 06)

Specifications

	Model Number	PJT-12V100WB	B PJT-15V100WB		3□ PJT-24V100WE	
nput Ratings / Characteristics						
Nominal Input Voltage		100-240Vac				
Input Voltage Range		90-264Vac				
Nominal Input Frequency		50-60Hz				
Input Frequency Range		47-63Hz				
Input Current		< 2.50A typ. (@ 115Vac			
Efficiency at 100% Load	115Vac	86.0% typ.	87.0% typ.	87.0% typ.	88.0% typ.	
	230Vac	88.0% typ.	89.0% typ.	89.0% typ.	89.0% typ.	
Max Inrush Current		30A typ. @ 115Vac, 60A typ. @ 230Vac				
Leakage Current		0.1mA @ 240	Vac			
Output Ratings / Characteristic	S					
Nominal Output Voltage		12Vdc	15Vdc	18Vdc	24Vdc	
Output set point range through po	otentiometer	± 1.5% (initial set point tolerance from factory)				
Output Current*	Convection	6.67A	5.33A	4.44A	3.33A	
	Forced Cooling	8.33A	6.67A	5.55A	4.17A	
Output Power	Convection	80W				
	Forced Cooling	100W				
Line Regulation		± 0.5% @ 115Vac & 230Vac				
Load Regulation		± 1.0% @ 115Vac & 230Vac				
PARD** (20MHz)		< 120mVpp	< 150mVpp	< 180mVpp	< 240mVpp	
Start-up Time	115Vac	500ms typ. (100% load)				
	230Vac					
Hold-up Time	115Vac	10ms typ. (100	0% load)			
	230Vac					

	230Vac					
Dynamic Response (Overshoot & Undershoot O/P Voltage)		± 5% @ 50-100% load (Slew Rate: 0.1A/µS)				
Start-up with Capacitive Loads		4,000uF Max	3,500uF Max	3,000uF Max	2,000uF Max	

*Convection: 80% load, Forced Cooling: 100% load **PARD is measured with an AC coupling mode, 5cm wires, and in parallel with 0.1µF ceramic capacitor & 47µF electrolytic capacitor.

Mechanical

Dimensions		101.6 x 50.8 x 31.8 mm [2" x 4"]	
Unit Weight		0.15 kg (0.33 lb)	
Cooling System		Convection / Forced Cooling	
Terminal	PJT-□□V100WBB <u>A</u>	Input: JST B2P3-VH(LF)(SN) Output: JST B4P-VH(LF)(SN)	
	PJT-□□V100WBB <u>B</u>	Input: Molex 26-62-4030 Output: Molex 26-60-4040	
		Input: JWT A3963WV2-3P-D Output: JWT A3963WV2-4P	
Wire		AWG 20-18	

All parameters are specified at 25°C ambient and AC unless otherwise indicated. 2 (October 2020, Rev. 06)

Neumüller Elektronik GmbH | Gewerbegebiet Ost 7 | 91085 Weisendorf | +49 9135 73666-0 | www.neumueller.com | info@neumueller.com

Environment

Operating	-10°C to +70°C (Cold start at -10°C, 80% load)	
Storage	-40°C to +85°C	
Convection	> 50°C de-rate power by 2% / °C	
Forced Cooling	> 50°C de-rate power by 2.5% / °C	
	10 to 95% RH (Non-Condensing)	
	0 to 5,000 Meters (16,400 ft.)	
Non-Operating	IEC 60068-2-27, Half Sine Wave: 50G for a duration of 11ms, 3 shocks for each 3 directions	
Operating	IEC 60068-2-6, Sine Wave: 10Hz to 150Hz @ 25m/S² (2.5G); 10 min per cycle, 90 min per axis for all X, Y, Z direction	
	II	
	2	
	Storage Convection Forced Cooling Non-Operating	

Protections

Overvoltage	< 18.0V,	< 22.5V,	< 27.0V,	< 36.0V,			
	Latch Mode	Latch Mode	Latch Mode	Latch Mode			
Overload / Overcurrent	< 170% of rate	< 170% of rated load current, Hiccup Mode,					
	Non-Latching (Auto-Recovery)						
Over Temperature	Non-Latching (Non-Latching (Auto-Recovery)					
Short Circuit	Hiccup Mode, Non-Latching (Auto-Recovery when the fault is removed)						
Internal Fuse at L pin	T5A						
Protection Against Shock	Class I with PE* connection						

*PE: Primary Earth

Reliability Data

3

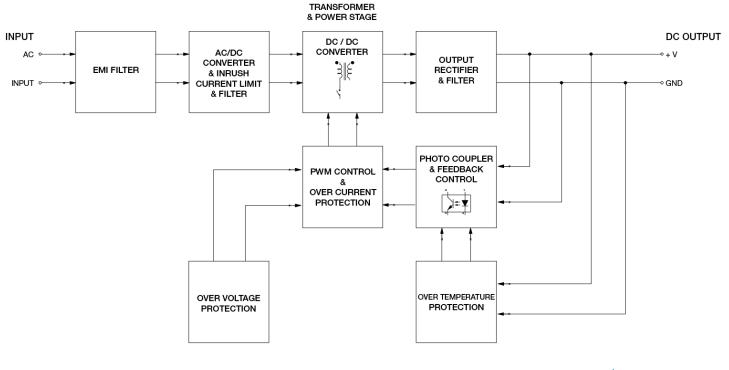
MTBF	> 700,000 hrs. as per Telcordia SR-332
Expected Cap Life Time	10 years (115Vac & 230Vac, 50% load @ 40°C)

Safety Standards / Directives

Electrical Safety	TUV Bauart	EN 60950-1, EN 62368-1		
UL/cUL recognized		UL 60950-1 and CSA C22.2 No. 60950-1 (File No. E131881)		
		UL 62368-1 and CSA C22.2 No. 62368-1 (File No. E131881)		
	CB scheme	IEC 60950-1, IEC 62368-1		
CE		In conformance with EMC Directive 2014/30/EU and Low Voltage Directive 2014/35/EU		
Galvanic Isolation	Input to Output	3.0KVac		
	Input to Ground	1.5KVac		
	Output to Ground	0.5KVac		

EMC

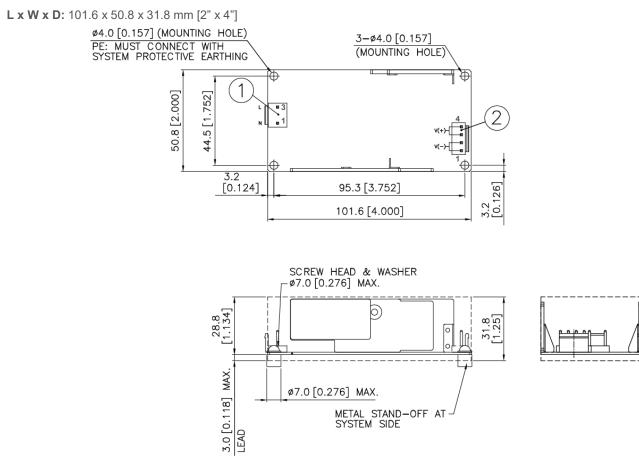
Emissions (CE & RE)		CISPR 32, EN 55032, FCC Title 47: Class B	
Immunity		EN 55024	
Electrostatic Discharge	IEC 61000-4-2	Criteria A ¹⁾ Level 3 Air Discharge: 8kV Level 3 Contact Discharge: 6kV	
Radiated Field	IEC 61000-4-3	Level 2 Criteria A ¹⁾ 80MHz-1GHz, 3V/M with 1kHz tone / 80% modulation	
Electrical Fast Transient / Burst	IEC 61000-4-4	Level 3 Criteria A ¹⁾ 2kV	
Surge	IEC 61000-4-5	Level 3 Criteria A ¹⁾ Common Mode ²⁾ : 2kV Differential Mode ³⁾ : 1kV	
Conducted	IEC 61000-4-6	Level 2 Criteria A ¹⁾ 3V with 80% AM	
Power Frequency Magnetic Fields	IEC 61000-4-8	Criteria A ¹⁾ Magnetic field strength 3A/Meter	
Voltage Dips	IEC 61000-4-11	30% dip; 10ms Criterion A (I/P: 115Vac) 30% dip; 10ms Criterion B (I/P: 100Vac) 60% dip; 100ms Criterion B 100% dip; 5000ms Criterion B	
Low Energy Pulse Test (Ring Wave)	IEC 61000-4-12	Level 3 Criteria A ¹⁾ Common Mode ²⁾ : 2kV Differential Mode ³⁾ : 1kV	
Harmonic Current Emission		IEC/EN 61000-3-2, Class A	
Voltage Fluctuation and Flicker		IEC/EN 61000-3-3	


1) Criteria A: Normal performance within the specification limits

2) Asymmetrical: Common mode (Line to earth)

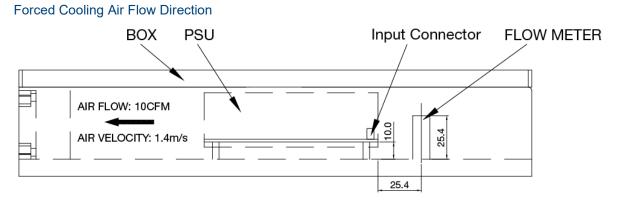
3) Symmetrical: Differential mode (Line to line)

Block Diagram

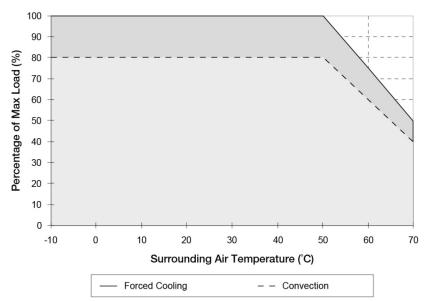

4

All parameters are specified at 25°C ambient and AC unless otherwise indicated. (October 2020, Rev. 06)

Dimensions

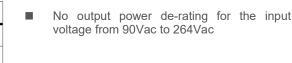


ltem	Device Description
1	Input Connector (CN1) Pin 1: Neutral Pin 2: NC Pin 3: Line
2	Output Connector (CN2) Pin 1 to 2 : V(-) Pin 3 to 4 : V(+)


5

Engineering Data

Output Load De-rating VS Surrounding Air Temperature


Fig. 1 De-rating for Horizontal Mounting Orientation

- **Convection:** > 50°C de-rate power by 2% / °C
- Forced Cooling: > 50°C de-rate power by 2.5% / °C

100 90 80 Load (%) 70 60 50 40 100 115 120 160 264 90 95 140 180 200 240

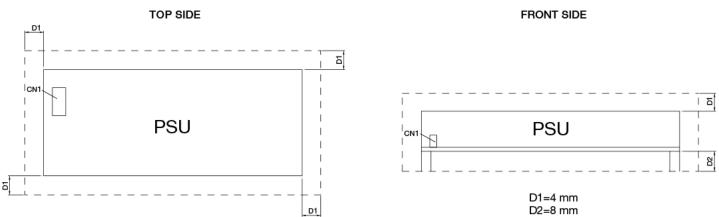
Output De-rating VS. Input Voltage

6

All parameters are specified at 25°C ambient and AC unless otherwise indicated. (October 2020, Rev. 06)

Input Voltage (Vac)

Note


- 1. Power supply components may degrade, or be damaged, when the power supply is continuously used outside the shaded region, refer to the graph shown in Fig. 1.
- 2. If the output capacity is not reduced when the surrounding air temperature >50°C, the device will run into Over Temperature Protection. When activated, the output voltage will go into bouncing mode and will recover when the surrounding air temperature is lowered or the load is reduced as far as necessary to keep the device in working condition.
- 3. Depending on the surrounding air temperature and output load delivered by the power supply, the device can be very hot!
- If the device has to be mounted in any other orientation, please contact info@deltapsu.com for more details.

Neumüller Elektronik GmbH | Gewerbegebiet Ost 7 | 91085 Weisendorf | +49 9135 73666-0 | www.neumueller.com | info@neumueller.com

Assembly & Installation

Any excessive twisting or bending may damage the device's PCB. Please handle the device with care.

Use cable of AWG No. 20-18. Please refer to Table 1 for the recommended Mating Connector and Terminal.

Table 1	Input / Output	Power Supply Header	Mating Connector	Terminal
A – JST connector	Input	B2P3-VH (LF)(SN)	VHR-3N	SVH-21T-P1.1
	Output	B4P-VH (LF)(SN)	VHR-4N	SVH-21T-P1.1
B – Molex connector	Input	26-62-4030	09-50-3031	08-52-0071
	Output	26-60-4040	09-50-3041	08-52-0071
C – JWT connector	Input	A3963WV2-3P-D	A3963H02-3P	A3963TOP-2
	Output	A3963WV2-4P	A3963H02-4P	A3963TOP-2

Safety Instructions

7

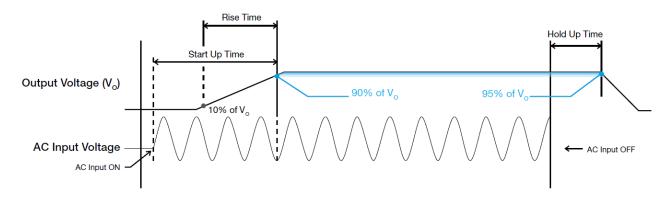
- If the device has to be mounted in any other orientation, please contact info@deltapsu.com for more details.
- The device is not recommended to be placed on surface with low thermal conductivity, such as plastics, for example.
- For safety reasons, please ensure the mounted device is kept at ≥ 4mm (0.16 inch) safety distance at all sides from other components and equipments. Please insert an insulation sheet between the system and product, if the safety distance is less than 4mm. In addition, to ensure sufficient convection cooling, always maintain a distance of ≥ 20mm (0.79 inch) from ventilated surfaces while the device is in operation.
- Note that the device can become very hot depending on the ambient temperature and load of the power supply. Do not touch the device while it is in operation or immediately after power is turned OFF. Risk of burning!
- Do not touch the terminals while power is being supplied. Risk of electric shock.
- Prevent any foreign metal, particles or conductors from entering the device through the openings during installation. It may cause: Electric shock; Safety Hazard; Fire; Product failure
- The power supply must be mounted by metal screws onto a grounded metal surface. It is highly recommended that the Earth terminal on the connector be connected to the grounded metal surface.

All parameters are specified at 25°C ambient and AC unless otherwise indicated. (October 2020, Rev. 06)

Functions

Start-up Time

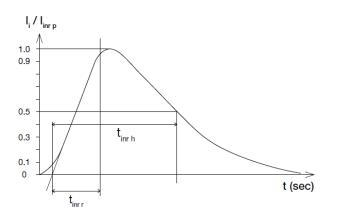
The time required for the output voltage to reach 90% of its final steady state set value, after the input voltage is applied.


Rise Time

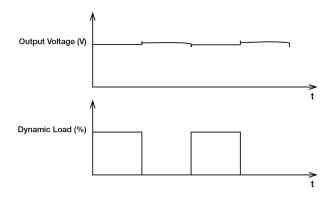
The time required for the output voltage to change from 10% to 90% of its final steady state set value.

Hold-up Time

Time between the collapse of the AC input voltage, and the output falling to 95% of its steady state set value.


Graph illustrating the Start-up Time, Rise Time, and Hold-up Time

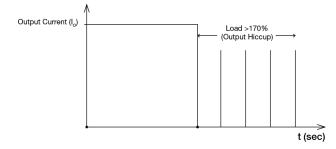
Inrush Current


8

Inrush current is the peak, instantaneous, input current measured and, occurs when the input voltage is first applied. For AC input voltages, the maximum peak value of inrush current will occur during the first half cycle of the applied AC voltage. This peak value decreases exponentially during subsequent cycles of AC voltage.

Dynamic Response

The power supply output voltage will remain within $\pm 5\%$ of its steady state value, when subjected to a dynamic load from 0 to 100% of its rated current.

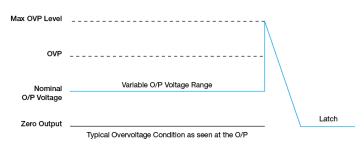


All parameters are specified at 25°C ambient and AC unless otherwise indicated. (October 2020, Rev. 06)

Neumüller Elektronik GmbH | Gewerbegebiet Ost 7 | 91085 Weisendorf | +49 9135 73666-0 | www.neumueller.com | info@neumueller.com

Overload & Overcurrent Protections (Auto-Recovery)

The power supply's Overload (OLP) and Overcurrent (OCP) Protections will be activated when output current exceeds 170% of I_0 (Max load). In such occurrence, the V_0 will start to droop and once the power supply has reached its maximum power limit, the protection is activated and the power supply will go into "Hiccup mode" (Auto-Recovery). The power supply will recover once the fault condition of the OLP and OCP is removed and I_0 is back within the specifications.


It is not recommended to prolong the duration of $I_{\rm O}$ when it is <170% but >100%, since it may cause damage to the PSU.

Overvoltage Protection (Latch Mode)

The power supply's overvoltage circuit will be activated when its internal feedback circuit fails. The output voltage shall not exceed its specifications defined on Page 3 under "Protections". Power supply will latch off, and require removal/re-application of input AC voltage in order to restart.

The power supply should be latch.

9

Over Temperature Protection (Auto-Recovery)

As described in load de-rating section, the power supply also has Over Temperature Protection (OTP). In the event of a higher operating temperature at 100% load, the power supply will run into OTP when the operating temperature is beyond what is recommended in the de-rating graph. When activated, the output voltage will go into bouncing mode until the temperature drops to its normal operating temperature as recommended in the de-rating graph.

Short Circuit Protection (Auto-Recovery)

The power supply's output OLP/OCP function also provides protection against short circuits. When a short circuit is applied, the output current will operate in "Hiccup mode", as shown in the illustration in the OLP/OCP section on this page. The power supply will return to normal operation after the short circuit is removed.

Others

PFC - Norm EN 61000-3-2

Line Current Harmonic content

Typically, the input current waveform is not sinusoidal due to the periodical peak charging of the input capacitor. In industrial environment, complying with EN 61000-3-2 is only necessary under special conditions. Complying to this standard can have some technical drawbacks, such as lower efficiency as well as some commercial aspects such as higher purchasing costs. Frequently, the user does not profit from fulfilling this standard, therefore, it is important to know whether it is mandatory to meet this standard for a specific application.

Attention

Delta provides all information in the datasheets on an "AS IS" basis and does not offer any kind of warranty through the information for using the product. In the event of any discrepancy between the information in the catalog and datasheets, the datasheets shall prevail (please refer for the latest datasheets information). Delta shall have no liability of indemnification for any claim or action arising from any error for the provided information in the datasheets. Customer shall take its responsibility for evaluation of using the product before placing an order with Delta.

Delta reserves the right to make changes to the information described in the datasheets without notice.

