SEOUL

SEOUL SEMICONDUCTOR

SMJA-3C14C44C-XXXX - Acrich 14W

Acrich-14W

Product Brief

Integrated AC LED Solution

SMJA-3G14C44C-XXXX

Description

- The Acrich series of products are designed to be driven directly off of AC line voltage, therefore they do not need the standard converter essential for conventional general lighting products.
- The converter or driver found in most general lighting products can limit the overall life of the product, but with the Acrich series of products the life of the product can more closely be estimated from the LED itself. This will also allow for a much smaller form factor from an overall fixture design allowing for higher creativity in the fixture.
- The modules have a high power factor which can contribute to a higher energy savings in the end application.

Features and Benefits

- Connects directly to AC line voltage
- High Power Factor
- Low THD
- Long Life Time
- Simple BOM
- Lead Free Product
- RoHS Compliant
- High Efficacy
- Flicker free
- TRIAC Dimmable

Key Applications

- Down light
- Flush mount lamp

Port No	Vin	Vin P	ССТ [К]		Flux [lm]			Vf	CRI	
Fall NO.	[Vac]	[W]	Bin	ССТ	Bin	Min.	Тур.	Bin	Bin	Min.
SMJA-3G14C44C-XX01	220	14	H04 2700 -	2700	B42	1280	1420		9	90
SMJA-3G14C44C-XX02	230	14		B65	1480	1650	ALL	8	80	

Table 1. Product Selection

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR

SMJA-3G14C44C-XXXX - Acrich 14W

Table of Contents

Inde	X
•	Product Brief
•	Table of Contents
•	Performance Characteristics
•	Absolute Maximum Ratings
•	Thermal Resistance
•	Relative Spectral Distribution
•	Color Bin Structure
•	Mechanical Dimensions
•	Marking Information
•	Packing & Label Information
•	Precaution for Use
•	Handling of Silicone Resin for LEDs
•	Handling with regards to static electricity
•	Storage before use
•	Guidelines for properly working with Acrich
•	Company Information
•	Revision History

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR

SMJA-3G14C44C-XXXX - Acrich 14W

Performance Characteristics

Table 2. Electro Optical Characteristics, $T_a^{[1]} = 25^{\circ}C$

Devenueter	Currents of		Value	Unit	Mork	
Parameter	Symbol	Min.	Тур.	Max.	Unit	
Luminous Flux(@CRI90,230V)	ф ^[2]	1280	1420	-	Im	B42
Luminous Flux(@CRI80,230V)	Ψ_V	1480	1650	-		B65
Correlated Color Temperature ^[3]	ССТ	2600	2700	2900	к	Н
	D.	80	82	-	-	8
CRI	Ra	90	92	-	-	9
Input Voltage [4]	V _{in}	-	230	-	Vac	3G
Power Consumption	Р	13	14	15	W	-
Operating Frequency	F		50 / 60		Hz	-
Power Factor	PF		Over 0.97		-	-
Viewing Angle	2Θ _{1/2}		120		deg.	-
Tolerance of Surge ^[5]	Vs	500	_	-	V	_
Transient Protection ^[6]	Vs	2500	-	-	V	-

Notes :

- (1) Test voltage is 230Vac at $T_a = 25^{\circ}C$.
- (2) Φ_V is the total luminous flux output measured with an integrated sphere.
- (3) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.
- (4) Operating Voltage doesn't indicate the maximum voltage which customers use but means tolerable voltage according to each country's voltage variation rate. It is recommended that the solder pad temperature should be below 70°C.
- (5) Surge withstand in accordance with IEC61000-4-5
- (6) At 230Vac, seven strikes, 100kHz 2.5kV in accordance with ANSI/IEEE C62.41.2-2002 Category A operation

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR

SMJA-3G14C44C-XXXX - Acrich 14W

Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings, $T_a = 25^{\circ}C$

Parameter	Symbol	Unit	Value
Maximum Input Voltage1)	V _{in}	Vac	240Vac
Power Consumption	Р	W	17
Operating Temperature ²⁾	T _{opr}	٥C	- 20 ~ 45
Storage Temperature ³⁾	T _{stg}	٥C	- 40 ~ 100
ESD Sensitivity	-	-	±4,000V HBM

Notes :

- (1) Maximum Voltage doesn't indicate the operating voltage which customers use but means tolerable voltage according to each country's voltage variation rate.
- (2) Ambient temperature with operation.
- (3) Ambient temperature without operation.

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR

Product Data Sheet SMJA-3G14C44C-XXXX - Acrich 14W

Thermal Resistance

Part	Package Power Dissipation [W]	Maximum Junction Temperature [°C]	Rθ _{j-s} [℃/W]
STW8A2SD	1.3	125	14.5
STW9A2SD-E1(H)	1.0	125	20

The Acrich LED has a thermal resistance of 6.0°C/W from junction of the LED to the

LED lead.

The maximum junction temperature of the WD LED package is 125°C, therefore the maximum lead temperature T_{s_max} is

 $T_{s max} = T_{j max} - (R\theta_{j-s} * P_d)$

= 125°C - (13°C/W * 1.0W) = 112°C

Although this is the maximum lead temperature, it is recommended to keep the lead temperature under 70°C.

Proxilluctt Data Sheet

SEOUL SEMICONDUCTOR

SMJA-3G14C44C-XXXX - Acrich 14W

Relative Spectral Distribution

Fig 1. Relative Spectral Distribution vs. Wavelength Characteristic

SEOUL SEMICONDUCTOR

SMJA-3G14C44C-XXXX - Acrich 14W

Relative Luminous Distribution

Fig 2. Relative Luminous Flux vs. Voltage at $T_a = 25^{\circ}C$, 230V

Voltage[RMS,V]

Relative Power Distribution

Voltage[RMS,V]

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR

SMJA-3G14C44C-XXXX - Acrich 14W

Color Bin Structure

H	11	H21		НЗ	H31		H41	
CIE X	CIE Y	CIE X	CIE Y	CIE X	CIE Y	CIE X	CIE Y	
0.4562	0.4260	0.4625	0.4275	0.4687	0.4289	0.4750	0.4304	
0.4515	0.4168	0.4575	0.4182	0.4636	0.4197	0.4697	0.4211	
0.4575	0.4182	0.4636	0.4197	0.4697	0.4211	0.4758	0.4225	
0.4625	0.4275	0.4687	0.4289	0.4750	0.4304	0.4810	0.4319	
H	12	H	22	НЗ	H32		42	
CIE X	CIE Y	CIE X	CIE Y	CIE X	CIE Y	CIE X	CIE Y	
0.4515	0.4168	0.4575	0.4182	0.4636	0.4197	0.4697	0.4211	
0.4468	0.4077	0.4526	0.4090	0.4585	0.4104	0.4644	0.4118	
0.4526	0.4090	0.4585	0.4104	0.4644	0.4118	0.4703	0.4132	
0.4575	0.4182	0.4636	0.4197	0.4697	0.4211	0.4758	0.4225	
H	13	H	23	нз	33	H	43	
CIE X	CIE Y	CIE X	CIE Y	CIE X	CIE Y	CIE X	CIE Y	
CIE X 0.4468	CIE Y 0.4077	CIE X 0.4526	CIE Y 0.4090	CIE X 0.4585	CIE Y 0.4104	CIE X 0.4644	CIE Y 0.4118	
CIE X 0.4468 0.4420	CIE Y 0.4077 0.3985	CIE X 0.4526 0.4477	CIE Y 0.4090 0.3998	CIE X 0.4585 0.4534	CIE Y 0.4104 0.4012	CIE X 0.4644 0.4591	CIE Y 0.4118 0.4025	
CIE X 0.4468 0.4420 0.4477	CIE Y 0.4077 0.3985 0.3998	CIE X 0.4526 0.4477 0.4534	CIE Y 0.4090 0.3998 0.4012	CIE X 0.4585 0.4534 0.4591	CIE Y 0.4104 0.4012 0.4025	CIE X 0.4644 0.4591 0.4648	CIE Y 0.4118 0.4025 0.4038	
CIE X 0.4468 0.4420 0.4477 0.4526	CIE Y 0.4077 0.3985 0.3998 0.4090	CIE X 0.4526 0.4477 0.4534 0.4585	CIE Y 0.4090 0.3998 0.4012 0.4104	CIE X 0.4585 0.4534 0.4591 0.4644	CIE Y 0.4104 0.4012 0.4025 0.4118	CIE X 0.4644 0.4591 0.4648 0.4703	CIE Y 0.4118 0.4025 0.4038 0.4132	
CIE X 0.4468 0.4420 0.4477 0.4526 H	CIE Y 0.4077 0.3985 0.3998 0.4090 14	CIE X 0.4526 0.4477 0.4534 0.4585	CIE Y 0.4090 0.3998 0.4012 0.4104 24	CIE X 0.4585 0.4534 0.4591 0.4644	CIE Y 0.4104 0.4012 0.4025 0.4118	CIE X 0.4644 0.4591 0.4648 0.4703	CIE Y 0.4118 0.4025 0.4038 0.4132 44	
CIE X 0.4468 0.4420 0.4477 0.4526 H [*] CIE X	CIE Y 0.4077 0.3985 0.3998 0.4090 14 CIE Y	CIE X 0.4526 0.4477 0.4534 0.4585 H3 CIE X	CIE Y 0.4090 0.3998 0.4012 0.4104 24 CIE Y	CIE X 0.4585 0.4534 0.4591 0.4644 H3 CIE X	CIE Y 0.4104 0.4012 0.4025 0.4118 04 CIE Y	CIE X 0.4644 0.4591 0.4648 0.4703 H4 CIE X	CIE Y 0.4118 0.4025 0.4038 0.4132 44 CIE Y	
CIE X 0.4468 0.4420 0.4477 0.4526 H ⁺ CIE X 0.4420	CIE Y 0.4077 0.3985 0.3998 0.4090 14 CIE Y 0.3985	CIE X 0.4526 0.4477 0.4534 0.4585 CIE X 0.4477	CIE Y 0.4090 0.3998 0.4012 0.4104 24 CIE Y 0.3998	CIE X 0.4585 0.4534 0.4591 0.4644 CIE X 0.4534	CIE Y 0.4104 0.4012 0.4025 0.4118 4 CIE Y 0.4012	CIE X 0.4644 0.4591 0.4648 0.4703 H4 CIE X 0.4591	CIE Y 0.4118 0.4025 0.4038 0.4132 44 CIE Y 0.4025	
CIE X 0.4468 0.4420 0.4477 0.4526 H [*] CIE X 0.4420 0.4373	CIE Y 0.4077 0.3985 0.3998 0.4090 14 CIE Y 0.3985 0.3893	CIE X 0.4526 0.4477 0.4534 0.4585 CIE X 0.4477 0.4428	CIE Y 0.4090 0.3998 0.4012 0.4104 24 CIE Y 0.3998 0.3906	CIE X 0.4585 0.4534 0.4591 0.4644 CIE X 0.4534 0.4534	CIE Y 0.4104 0.4012 0.4025 0.4118 4 CIE Y 0.4012 0.3919	CIE X 0.4644 0.4591 0.4648 0.4703 H4 CIE X 0.4591 0.4538	CIE Y 0.4118 0.4025 0.4038 0.4132 44 CIE Y 0.4025 0.3932	
CIE X 0.4468 0.4420 0.4477 0.4526 H CIE X 0.4520 0.4373 0.4428	CIE Y 0.4077 0.3985 0.3998 0.4090 14 CIE Y 0.3985 0.3893 0.3893	CIE X 0.4526 0.4477 0.4534 0.4585 CIE X 0.4585 CIE X 0.4477 0.4428 0.4483	CIE Y 0.4090 0.3998 0.4012 0.4104 24 CIE Y 0.3998 0.3906 0.3919	CIE X 0.4585 0.4534 0.4591 0.4644 CIE X 0.4534 0.4534 0.4483 0.4538	CIE Y 0.4104 0.4012 0.4025 0.4118 4 CIE Y 0.4012 0.3919 0.3932	CIE X 0.4644 0.4591 0.4648 0.4703 H4 CIE X 0.4591 0.4538 0.4593	CIE Y 0.4118 0.4025 0.4038 0.4132 44 CIE Y 0.4025 0.3932 0.3944	

Rev0.0, February 7, 2021

www.seoulsemicon.com

SMJA-3G14C44C-XXXX - Acrich 14W

Mechanical Dimensions

Rev0.0, February 7, 2021

www.seoulsemicon.com

SMJA-3G14C44C-XXXX - Acrich 14W

Marking Information

Fig 1. 2D Marking point

- ① SMT Date (YYMMDD, 6 Digits)
- 2 MP Information (10 Digits) + Lot no.(1Digit)
- ③ Series Number (5 Digits)

Table 1. MP information

03 : Center 4bin Mixing(3-step)9 : CRI9004 : Center 4bin Mixing(4-step)MC : XMC center 1Bin (3-step)

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR

SMJA-3G14C44C-XXXX - Acrich 14W

Packing

1. Tray information

- 16 PCS LED modules packed per tray
- 2. Tray stack and taping

- 10 LED module trays and additional 1 dummy trays up of box
- Add silica gel (1EA) on top of the tray
- 3. Sealing packing

4. Box information & packing

- 160 PCS modules per BOX 1EA
- 1Box : 16 PCS per tray x 10 trays = 160 PCS

Notes

- Information for rank mixing
- Tray and sealing packing should not include rank mixing.
- Rank mixing is possible in the box.

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR

Product Data Sheet

SMJA-3G14C44C-XXXX - Acrich 14W

Label Information

Model No.	SMJA-3G14C44C-XX01 ⁽¹⁾
Rank	B42H049ALL ⁽²⁾
Туре	4 Step / CRI 90
Quantity	
Date	YYMMDDXXXXX-8XXXXXX ⁽³⁾
SEOUL	SEOUL SEMICONDUCTOR CO.,LTD.

Reference

- (1) The model number designation is explained as follow
 - SMJA : Seoul Semiconductor internal code
 - 3 : 230Vac14 : About power consumption
 - 44 : PKG Q'ty

C C

G

- : Traic Dim& Flicker free
- : WD-S30T : 3528
- (2) It represents the LED module rank that consists of nine characters.
- (3) YYMMDD : Produced date.
 XXXXX : Lot No.
 8XXXXXX : SSC internal product code(SAP)

Note

(1) It is attached to the top left corner of the box.

	TOTAL Quantity
	XXX
SEOUL	SEOUL SEMICONDUCTOR CO.,LTD.

(1) It is attached to the bottom right corner of the box.

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR _

SMJA-3G14C44C-XXXX - Acrich 14W

Precaution for Use

- (1) Please review the Acrich Application Note for proper protective circuitry usage.
- (2) Please note, Acrich products run off of high voltage, therefore caution should be taken when working near Acrich products.
- (3) DO NOT touch any of the circuit board, components or terminals with body or metal while circuit is active.
- (4) Please do not add or change wires while Acrich circuit is active.
- (5) Long time exposure to sunlight or UV can cause the lens to discolor.
- (6) Please do not use adhesives to attach the LED that outgas organic vapor.
- (7) Please do not use together with the materials containing Sulfur.
- (8) Please do not assemble in conditions of high moisture and/or oxidizing gas such as Cl, H₂S, NH₃, SO₂, NO_x, etc.
- (9) Please do not make any modification on module.
- (10) Please be cautious when soldering to board so as not to create a short between different trace patterns.

SEOUL SEMICONDUCTOR

Product Data Sheet

SMJA-3G14C44C-XXXX - Acrich 14W

Precaution for Use

- (11) LEDs are sensitive to Electro-Static Discharge (ESD) and Electrical Over Stress (EOS).
 Below is a list of suggestions that Seoul Semiconductor purposes to minimize these effects.
- a. ESD (Electro Static Discharge)

Electrostatic discharge (ESD) is the defined as the release of static electricity when two objects come into contact. While most ESD events are considered harmless, it can be an expensive problem in many industrial environments during production and storage. The damage from ESD to an LEDs may cause the product to demonstrate unusual characteristics such as:

- Increase in reverse leakage current lowered turn-on voltage
- Abnormal emissions from the LED at low current

The following recommendations are suggested to help minimize the potential for an ESD event: One or more recommended work area suggestions:

- Ionizing fan setup
- ESD table/shelf mat made of conductive materials
- ESD safe storage containers

One or more personnel suggestion options:

- Antistatic wrist-strap
- Antistatic material shoes
- Antistatic clothes

Environmental controls

- Humidity control (ESD gets worse in a dry environment)
- b. EOS (Electrical Over Stress)

Electrical Over-Stress (EOS) is defined as damage that may occur when an electronic device is subjected to a current or voltage that is beyond the maximum specification limits of the device. The effects from an EOS event can be noticed through product performance like:

Changes to the performance of the LED package (If the damage is around the bond pad area and since the package is completely encapsulated the package may turn on but flicker show severe performance degradation.)

Changes to the light output of the luminaire from component failure

Components on the board not operating at determined drive power

Failure of performance from entire fixture due to changes in circuit voltage and current across total circuit causing trickle down failures

It is impossible to predict the failure mode of every LED exposed to electrical overstress as the failure modes have been investigated to vary, but there are some common signs that will indicate an EOS event has occurred.

- Damaged may be noticed to the bond wires (appearing similar to a blown fuse).
- Damage to the bond pads located on the emission surface of the LED package

(shadowing can be noticed around the bond pads while viewing through a microscope).

- Anomalies noticed in the encapsulation and phosphor around the bond wires.
- This damage usually appears due to the thermal stress produced during the EOS event.
- c. To help minimize the damage from an EOS event Seoul Semiconductor recommends utilizing
 - A surge protection circuit
 - An appropriately rated over voltage protection device
 - A current limiting device

Rev0.0, February 7, 2021

www.seoulsemicon.com

SEOUL SEMICONDUCTOR

Product Data Sheet

SMJA-3G14C44C-XXXX - Acrich 14W

Handling of Silicone Resin for LEDs

- (1) Acrich series is encapsulated with silicone resin for high optical efficiency.
- (2) Please do not touch the silicone resin area with sharp objects such as pincette(tweezers).
- (3) Finger prints on silicone resin area may affect the performance.
- (4) Please store LEDs in covered containers to prevent dust accumulation as this may affect performance.
- (5) Excessive force more than 3000gf to the silicone lens can result in fatal or permanent damage with LEDs.
- (6) Please do not cover the silicone resin area with any other resins such as epoxy, urethane, etc.

SEOUL SEMICONDUCTOR

Product Data Sheet

SMJA-3G14C44C-XXXX - Acrich 14W

Handling with regards to static electricity

- (1) The Acrich products use an integrated circuit (IC) which can be damaged when exposed to static electricity. Please handle using equipment that prevents static electricity. Do not touch unless ESD protection is used.
- (2) The Acrich product should also not be installed in end equipment without ESD protection.

Storage before use

- (1) Do not impact or place pressure on this product because even a small amount of pressure can damage the product. The product should also not be placed in high temperatures, high humidity or direct sunlight since the device is sensitive to these conditions.
- When storing devices for a long period of time before usage, please following these guidelines:
 * The devices should be stored in the anti-static bag that it was shipped in from Seoul-Semiconductor with opening.

* If the anti-static bag has been opened, re-seal preventing air and moisture from being present in the bag.

SEOUL SEMICONDUCTOR

Product Data Sheet

SMJA-3G14C44C-XXXX - Acrich 14W

Guidelines for properly working with Acrich

- (1) Discharge the lighting system a minimum of 2-3 times prior to working with the module.
- (2) Use only properly rated test equipment and tools for the rated voltage and current of the product being tested.
- (3) It is strongly suggested to wear rubber insulated gloves and rubber bottom shoes.
- (4) Do not wear any conductive items (such as jewelry) which could accidentally contact electric circuits.
- (5) Perform several tests with power off and the lighting system unplugged.
- (6) Faults, lightning, or switching transients can cause voltage surges in excess of the normal ratings.
- (7) Internal component failure can cause excessive voltages.
- (8) Stored or residual electricity in long wire could be hazardous.
- (9) Make sure proper discharge prior to starting work.

Neumüller Elektronik GmbH

Product Data Sheet

SEOUL SEMICONDUCTOR

SMJA-3G14C44C-XXXX - Acrich 14W

Revision History

Revision	Date	Page	Remarks
R0.0	2021-01-29	All	First Release